skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Abraham, Ittai"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Alistarh, Dan (Ed.)
    Today’s mainstream network timing models for distributed computing are synchrony, partial synchrony, and asynchrony. These models are coarse-grained and often make either too strong or too weak assumptions about the network. This paper introduces a new timing model called granular synchrony that models the network as a mixture of synchronous, partially synchronous, and asynchronous communication links. The new model is not only theoretically interesting but also more representative of real-world networks. It also serves as a unifying framework where current mainstream models are its special cases. We present necessary and sufficient conditions for solving crash and Byzantine fault-tolerant consensus in granular synchrony. Interestingly, consensus among n parties can be achieved against f ≥ n/2 crash faults or f ≥ n/3 Byzantine faults without resorting to full synchrony. 
    more » « less
  2. A mediator can help non-cooperative agents obtain an equilibrium that may otherwise not be possible. We study the ability of players to obtain the same equilibrium without a mediator, using only cheap talk, that is, nonbinding pre-play communication. Previous work has considered this problem in a synchronous setting. Here we consider the effect of asynchrony on the problem, and provide upper bounds for implementing mediators. Considering asynchronous environments introduces new subtleties, including exactly what solution concept is most appropriate and determining what move is played if the cheap talk goes on forever. Different results are obtained depending on whether the move after such ``infinite play'' is under the control of the players or part of the description of the game. 
    more » « less